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INTRODUCTION

In chemical process industry, study of dynamic behavior of
Individual unit is essential in regard to operation and control of
the overall process.

To provide a safe operation of a plant during transients like,
fluctuation of set point, load and plant start-up or shut-down,
transient analysis of an unit is required.

Transient analysis can be simulated and experimented in the
prototype simulator and experimental facility, respectively
before implementation of the units in a plant.

The shell and tube heat exchangers are employed In various
processes such as, in between two stripping column and preheat
train of a crude distillation unit of a oil refinery, reactor feed
heating, reactor product cooling, processing of food and milk
pasteurization etc.



PROTOYPE SHELL AND TUBE HEAT EXCHNGER

* A counter-flow shell and tube heat exchanger is chosen for
simulated transient analysis

Hot fluid Is heated water in the tube side and cold fluid is
water at room temperature in the shell side are circulated.

Table. Specifications of shell and tube heat exchanger
L n

Pass
(m) (number of tubes)
0.5 24 1 tube pass
1 shell pass
Baffle di.p, df, ds P,
(mm) (mm)

25% cut segmental 13, 16,220 30 (Tnangular)

Cont.
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Classifications

 Itis based on conservation of mass, momentum and energy.
Accumulation of property=In — Out — Generation

 Distributed parameter model (Microscopic view)

e Lumped parameter model (Macroscopic view)



Shell and Tube Heat Exchanger

e Governing equations are based on energy balance
equation. The assumptions are following:

a) Viscous energy dissipation terms are neglected

b) pressure changing term, I.e., accumulation of
mechanical energy Is neglected for negligible
coefficient of thermal expansion of fluid,

c) velocity distribution along the length of the heat
exchanger Is neglected, i.e., the uniform velocity
along the length Is assumed,

d) temperature change over the radial distance of
the shell and tube Is neglected for small equivalent
diameter of the both side, I.e., one dimensional
governing equation Is assumed.



The distributed parameter model

Independent variables is the function of time and space, that can be
represented by partial differential equation.
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NUMERICAL SIMULATION

IMPLICIT FINITE DIFFERENCE SCHEME

o Discretized energy equation of cold side fluid at inlet node
based on central difference scheme

At Aty Atv
1 1 h . h
Thy (1 4 —rh) IR e OB T T
At Atv Atv At
+1 +1 ¥ ¢
i (1 N Tc) bk o j e 4 TE 5 = s

e Discretized energy equation of hot side and cold side fluid at
middle node based on backward difference scheme
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» Discretized energy equation of wall material
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e The generated tridiagonal matrix is solved using matrix inversion
technique using a Matlab code.



Table. Range of model parameters, operating velocity and dirt factor

Th (s) Te (s) Thw (S) Tew (s)

83.38-101.45 122.83-202.62 4281-52.09 44325-71.

v (m/s) ve(m/s)  Ra (K m*/W)

0.009-0.0174 0.006-0.0123  0.001




SIMULATED TRANSIENT ANALYSIS

» Steady state solution of the governing equations (energy
equation) Is estimated.

» Based on the steady state solution, temperature distributions in
the shell and tube side heat exchanger is obtained using the
finite difference scheme.

» Considering the steady state temperature distributions as initial
condition, perturbations (step change) of inlet temperature and
flow rate Is given to obtain transient temperature response of
the other side of the shell and tube heat exchanger using the
code.



ANALYTICAL SIMULATION AND TRANSIENT ANALYSIS

* The temperature deviations were derived from energy balance
equations and presented in terms of Laplace domain model

equation
dT. - -
+p(5) = _ q(s)

= T
C h
dx Ve
1 T T
p(s) =s+—— i and g(s) = oL
T tc('rhwfcw5+rcw+rhw_} Tf(.fhwrrw5+frw+thw}

e The exact solution of the equation is
For a step change of hot fluid

prm— pr— q(SJ _—M
T{? — Th (1 —_ e vr:sx
temperature of amplitude, A°C, the

p(s) .
T — A4(s) (1 L) response of cold fluid temperature at
x=L.




RESULTS AND DISCUSSIONS

NUMERICAL SIMULATION
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Hot fluid velocity (0.0132 £0) m/s and cold fluid velocity (0.009- 0.003) m/s
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COMPARISON OF NUMERICAL AND ANALYTICAL RESULTS
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COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS
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o Effectiveness relation as a function of number of
transfer unit NTU Is Iincorporated to model heat
exchanger of more than one pass.



Lumped parameter model

* In the lumped parameter model, the spatial variation of a property
IS neglected or lumped. Here the independent variable is function

of time only.
* The length of the heat exchanger, reactor, etc., is small enough that

outlet temperature of heat exchanger in the both side is assumed
to be same as the temperature inside those side (shell and tube).

* In other ward, small length gives efficient longitudinal mixing in the
flow that the outlet temperature of any side is same as the
temperature inside that side.
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« The energy balance equation are based on the same
assumptions as earlier model, except spatial distribution of
Independent variable is not considered here.

dT

h _ : - - v Hot fluid in
PrViCpn dt Wicpn(Thi — Th) + hy Ay (T, — T}) tube side
dT, _ _ _ . :
pCVC Cpfd_ - wt' CPC(.Tci o Tc) Ll h‘cAc(.Tw - TC) .COId fIUI(-ZI
t in shell side
dT ., h A, _ h,A;, :
= (T,—T,)+ (T, — T, ) Wall material
dt  p,V,Chy pRYes



SIMULATED TRANSIENT ANALYSIS

o Steady state solution of the governing equations (energy
equation) is estimated.

0= Wc Cpc (.Tci — Tc) Ll hcAc (Tu — Tc) vold fuid

in shell side

0 =Wy cp(Th — Tp) + hyAy(T,, — Tp,) FlotAudIn

tube side

0=h, A (T.—T,)+hA;(T;, —T,.) Wall material

/
* The matrix solution gives the solution [ThS TCS TWS]

« Considering the steady state temperatures as initial condition,
perturbations (step change) of inlet temperature and flow
rate Is given to obtain transient temperature response of the
other side of the shell and tube heat exchanger using the
Runge-Kutta numerical scheme.



Matlab-Simulink demonstration

Problem definition: A double pipe heat exchanger has been
utilized to cool benzene flowing in the inner tube by cooling
water flowing in the outer tube. Initial condition are as
follows: Benzene hot side- W,=0.804 Ib/s; T, = 141 °F;
C,n=0.435 BTU/Ib-°F; h,A,=0.907845458 BTU/s- °F; p,V|cC,n=
14.07617 BTU/°F.

Water cold side- W= 2.168 Ib/s; T; = 65 °F; c,.=1 BTU/Ib-°F;
h.A=2.249877874 BTU/s- °F; p.V C,.= 31.2454 BTU/°F.

Find steady state temperature of hot side, cold side and wall.

Show transient analysis for step change of flowrate and
temperature of hot side.



Trial solution

e Modeling of first order differential equation

dy _ Simulink tutorial given by

© . =3x-2y+1 Eq.(1) N.L Ricker, Professor
dz _ Emeritus, Chemical
* n - x—-y—3z Eq.(2) Engineering
_ University of Washington
Selecting two subsystems
|~) TwoODEs MNi=1E3
File Edt View Simulston Format Tools Help
D & TR REY R
(o
Equaton 5
RCm
Equaton B
F100% oded5




Generation of subsystem-I replicating Eq. 1
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Generation of subsystem-Il replicating Eq. 2
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Overall system and transient analysis
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Displayed result in the scope
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« Steady sate solution gives
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Subsystem for hot side
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Subsystem for cold side
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Subsystem for wall material

1/wdotwCpw Integrator




Results
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Stirred tank heater-A Nonlinear System

e Consider the stirred Tank Heater System (Figure): Total
momentum of the system remains constant and will not be
considered. Write total mass balance: Total mass in the tank
at any time t =rV =rAh where A represents cross sectional
area, h represents height of liquid and r represents density of
the I|qU|d Assuming that the density is independent of the

temperature and remains constant. Take F = 0. 02236\/_
Write energy balance equation considering no change In
kinetic energy and potential energy. For liquid system assume
change of internal energy same as enthalpy change. Heat
given through steam is Q=5 kW and it is remains unchanged.
Draw Simulink model of the system - total mass balance and
energy balance equations with state variables h (in material
balance) and T (in energy balance). Find the steady state h
and steady state T of the tank. Take inlet temperature of the
tank T;=30 °C, inlet flow rate of the tank F=0.01 m3/min. A=1
m2, r=800 kg/m3 C,=2000 J/kg-°C. Show 'the response of h
and T for a step change of F; (0.01+0.012).



”\H_____,/l—

h=height

—
Condensate

Steam

e Mass balance: d(fifh) = pF; — pF; A % = F; — 0.02236vh

* Energy balance: d(pAdhthT) = pFic,T; — pFc, T +Q
d(hT
dt pCy

Ath—F T;—T) + ¢
dt_ l(l ) pcp



« Steady state solutions
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Simulink block diagram
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Mass balance subsystem
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Exothermic CSTR with cooling system -A Nonlinear
System with unstable dynamics

Cas, Tt o Mass balance of species A
Tl rh TC2 - dCA F . Ea
l _ : dt = (CAf - CA)_ kOCA €Xp ﬁ

lu€
k-
'-a
—
.

if

F-
if

dT F (-AH) -E,) UA
- V(T -T)- p kOCAexp( RT) VpCp(T -T))

Energy balance balance of reactor

. Fis
Energy balance balance of jacket l __J (ij _Tj).|_



Transient using Matlab-function

function f=cstr(t,Xx)

global F Fp¥ V VjJ rowcp rowjcpj U A Ea R kO
delH TF Tjf Caf

C=x(1);

T=x(2);

T1=x(3);

T()=(F/V)*(Caf-C)-kO*C*exp(-
Ea/(R*(T+459.6))):;

T(2)=(F/V)*(TFf-T)+(delH/ (rowcp))*kO*C*exp (-
Ea/(R*(T+459.6)))-(U*AZ/(V*rowcp))*(T-T});
F(3)=(F11t/V))*(T)T-
T3)+(U*AZ/(V3*rowjcpl))*(T-T));

=1";



 Main program
clc;
clear all;
global F FJ¥ V VjJ rowcp rowjcpj U A Ea R kO delH Tf Tjf Caf
F=200+40; %F=(200+40)*0.0283168/3600 m3/s
Fjf=300; %F=300* 0.0283168/3600 m3/s
V=100; %V=100*0.0283168 m3
Vj=25; % Vj=25*0.0283168 m3;
rowcp=53.25;%rowcp= 20699.53*53.25 J/m3/K
rowjcpj=55.6; ;%rowcp= 20699.53*55.6 J/m3/K
U=75;
%BTU/hr/ft2/0F to W/m2/0oK
% U=425.86975;
R=1.987;
k0=16.96*10"(12);
% hr-1 to s-1
%k0=(16.96*10"(12))/3600;
% 1 Ib-mol=0.45359237 kg mol
% 1 BTU= 1055.06 J
delH=39000; % delH=39000*2326.021 J/kg mol
Ea=32400;
%1 BTU/Ib mol=2326.021 J/kg mol
%Ea=32400*2326.021;
Caf=0.132; % Caf=0.132* 0.45359237/0.0283168 kg mol/m3;
A=88; % A=88*0.092903 m2;
TjF=0;
TF=77;
[t,x]=0ded5(@cstr,[0 15],[0.08855 75.3563 21.36174]);
plot(t,x(:,1))



Result
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Linearization of process

 linearization of a nonlinear function is obtained using a Taylor
series expansion. Considering first order truncation of the
series,
Single (00 = F(6) 4o
dx

o ron (x — x, )+ higher order terms

S

X

Doubl
V:rlijab?e f(X,y)=1‘(Xs,ys)+3—]c (x—xs)+£ (y—y, )+ higherorder terms

e (Xs'ys) dy (Xs,ys)

X, Y are the steady sate values of x and y respectively



Maas balance Equation in non-isothermal CSTR

dC F Ea a
dC F E, 2 (C,-C
th _ y (CAf _(:A)— ko( > e exp( S ] kOCAs exp( RT. ]( A As)

RT?

—k CAs(e p[ 'Er D( E. j(_l_ T) £q.(b) After linearization

dt

Maas balance Equation in terms of deviation variable

e ol

The deviation variables are ~
A:CA_CAS AtSteadyState CA:CA_CAS :O

S

dCy —0= VE(CN —C,, )_ K,C exp( ;ia j Steady sate equation Eq.(c)




Energy balance Equation of CSTR tank in terms of deviation variable

e S e

P P

_;’_é:(f_ﬂ) Eq.(e)

Energy balance Equation of cooling jacket in terms of deviation variable

a0 S r)e YA F-7,) e

pj




« State space model
* The Egs.(d-f) can be represented to obtain state space model,

% _a11 d;p a13_ g 0 |
-I: — | %21 22 23 1 +| 0 ij
Tj | A3 Ay, a33__Tj A _b31
 Where, - - [dCa
EA = CA _CAS CA dl
U= and | T |__| dT
L= — dt
Ti| 4Ty
- 4 dt _







det(J,—Al1)=0 —— det

IS Jacobian matrix at

S steady state

A3




Stability of nonlinear system

Brusselator in terms of non-dimensional variables: It
resembles dynamics of some typical reaction in CSTR.

dx 5 Two coupled nonlinear ordinary differential
—=a—-bx+Xx7y-x equations- Brusselator dynamical system by

gt Prigogine and Lefever in 1968 and dubbed the
d_}[’ _ bx— X2y Brusselator" by Tyson in 1973.

Steady state solutionis  [x, y.|=[a b/a]

- o(dx/dt) o(dx/dt)
Jacobian matrix at steady state Is ] OX oy
s | o(dy/dt) o(dy/dt)
. OX oy |,
L L B 2
After estimating derivatives ] = b-1 a

SS _—b _a2



A—%X kl
B+Y—>Y+D ks




A

det(J, ~A1)=0 et

‘+A(@°+1-b)+a° =0

The Is an eigenvalue.

The stability of the steady state will depend on the sign of the

eigenvalue or (a*+1—b)

When any eigenvalus has positive real part it will be unstable.

b-1-1
—-b

a
—a‘ -1

When all eigenvalus has negative real part it will be stable.
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Bifurcation in CSTR

 Liquid-solid catalytic reaction is carried out in a CSTR.

Maas balance Equation in non-isothermal CSTR

dc _E,
V th _ F(CAf —CA)— k,C,V exp( - j

Energy balance Equation in non-isothermal CSTR

e.) +a- ) 15 =(oc,), T, ) arcivexd )




Dimensionless mass balance equation

e (1-c')-c'Da exp{y(l— %ﬂ

dt’

Dimensionless mass balance equation

dT’ 1
Le =(1-T")+ Bc'Daex e
o TP pM Tﬂ

B.A. Finlayson, Introduction to Chemical Engineering Computing, WILEY
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Large Scale Commercial
Applications

3.2.1.

3.2.2.

3.2.3.

3.2.4.

3.3.

3.3.1.

3.3.2.

3.3.3.
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3.4.

Tubular Plug Flow Reactors

Jorg Sauer, Nicolaus Dahmen, Edmund Henrich,
Ullmann's Encyclopedia of Industrial Chemistry

Olefins by Steam Cracking of Naphtha
Gas Oil Cracking in the FCC Riser Reactor
Vinyl Chloride Production by EDC Dehydrochlorination

High Pressure Ethylene Polymerization for Low Density
Polyethylene (LDPE) - Polyethylene

Other Commercial Applications
Gas Phase Halogenation of Methane and Light Alkanes
HCN-Production in the Degussa BMA Process
Ketene via Acetic Acid or Acetone Cracking
Ethylene Glycol via Ethylene Oxide Hydrolysis

Various Additional Applications

Research and Development






Mole balance in a tubular reactor

Mole balance of a reactant species A (ra=-kCa", n=order of the reaction, k=reaction constant) in
a tubular reactor with dispersion coefficient D can be written with partial differential equation
(PDE) as

ac ., auc _ ., 9%c

T Dot (1)
If the order of the reaction n=1 and axial velocity U is constant over the length of the reactor
the eq. 1 can be written as

oc 1 0c

_ . 0%C

Finite difference discretization
This PDE can be discretized with finite difference method with time (At) and space (Ax)
marching as

ot | Sl el
+U =D
At 2Ax Ax?2

_ kCit+At (3)
Here i is denoted by elements of space marching or number of nodes.

Multiplying the eq. by At and can be rearranged as

pCHHA + qCH —refPt = ¢f )

Where,

p=kAt+1+ %Af (6)
=i e @
= o ®)

Initial condition
Initial condition is at t=0, and i=1,..., 5, ¢} = 0.8
Boundary condition

Now Boundary condition (BC) for face A is Ca=0.8;



. ac Ct+At Ct+At A A
BCforface Bis —~ = 0;=——=0; ¢ = /™

Ax
i.e., fori=5, Ct¥it = ct+at

Let divide the whole length of the reactor into 5 nods (distance between two consecutive nodes
is AX) between boundary face A and B in the Figure below. Now write equation 5 for five nodes

(i=1,.., 5).

For i=1 (left boundary node),

pC1t+At + qCZt+At _ T'CA — Cf

pC t+At + qct+At Cl +T'CA (9)
Fori=2,3.., 4 (middle nodes),

pct+At + qut_l-_l-lAt rct+At Ct (10)
For example, 2 node equation will be,

pcf+At + qul;'+At Ct+At Ct (11)
For i=5 (right boundary node),

pC5t+At + qCStift rct+At C5

Putting BC for right face, Ct¥4t = ct+at

pC5t+At + qCSt+At rct+At C5t

pC5t+At + qCSt+At Ct+At Ct

(p + q)Ct+At 7.Ct+A1: Ct (12)
Now five equations for 5 no. of nodes can be written in the form of

AX =B (13)



[P 4 1
[ —r p q |
A= —r p q (14)
-r p q
-r p+gq

Matrix A is called tri-diagonal matrix.

-Cf+At-
C2t+At
X =|[ct+oe (15)
C4t-+At
| CEHA
[CE+1rC,7
C;
B = ct (16)
Ci
Cé
[P q 1CEHT et +7Ca
I—r P q | i C;
-r p q citt =1 G (17)
—r p+q _CFI’I+At_ | CSt

Equation 18 in implicit form has been solved using a suitable algorithm of linear algebra like
Gauss elimination, Gauss-Seidel, or Cholesky decomposition methods.



