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INTRODUCTION
• In chemical process industry, study of dynamic behavior of

individual unit is essential in regard to operation and control of
the overall process.

• To provide a safe operation of a plant during transients like,
fluctuation of set point, load and plant start-up or shut-down,
transient analysis of an unit is required.

• Transient analysis can be simulated and experimented in the
prototype simulator and experimental facility, respectively
before implementation of the units in a plant.

• The shell and tube heat exchangers are employed in various
processes such as, in between two stripping column and preheat
train of a crude distillation unit of a oil refinery, reactor feed
heating, reactor product cooling, processing of food and milk
pasteurization etc.



PROTOYPE SHELL AND TUBE HEAT EXCHNGER 

• A counter-flow shell and tube heat exchanger is chosen for
simulated transient analysis

• Hot fluid is heated water in the tube side and cold fluid is
water at room temperature in the shell side are circulated.

Table. Specifications of shell and tube heat exchanger

Cont.



Fig. Schematic diagram of the prototype



Classifications
• It is based on conservation of mass, momentum and energy.

Accumulation of  property= In – Out – Generation
• Distributed parameter model (Microscopic view)
• Lumped parameter model (Macroscopic view)



Shell and Tube Heat Exchanger

• Governing equations are based on energy balance
equation. The assumptions are following:
a) Viscous energy dissipation terms are neglected
b) pressure changing term, i.e., accumulation of
mechanical energy is neglected for negligible
coefficient of thermal expansion of fluid,
c) velocity distribution along the length of the heat
exchanger is neglected, i.e., the uniform velocity
along the length is assumed,
d) temperature change over the radial distance of
the shell and tube is neglected for small equivalent
diameter of the both side, i.e., one dimensional
governing equation is assumed.



The distributed parameter model

Cold fluid 
in shell side

Hot fluid in 
tube side

Wall 
material

Independent variables is the function of time and space, that can be
represented by partial differential equation.



tc is time constant of 
cold side

th is time constant of 
hot side

Het transfer area Fluid volume



NUMERICAL SIMULATION
IMPLICIT FINITE DIFFERENCE SCHEME

• Discretized energy equation of cold side fluid at inlet node
based on central difference scheme

 Discretized energy equation of hot side and cold side fluid at
middle node based on backward difference scheme



• Discretized energy equation of wall material

 The generated tridiagonal matrix is solved using matrix inversion
technique using a Matlab code.



Table. Range of model parameters, operating velocity and dirt factor



SIMULATED TRANSIENT ANALYSIS

 Steady state solution of the governing equations (energy
equation) is estimated.

 Based on the steady state solution, temperature distributions in
the shell and tube side heat exchanger is obtained using the
finite difference scheme.

 Considering the steady state temperature distributions as initial
condition, perturbations (step change) of inlet temperature and
flow rate is given to obtain transient temperature response of
the other side of the shell and tube heat exchanger using the
code.



ANALYTICAL SIMULATION AND TRANSIENT ANALYSIS

• The temperature deviations were derived from energy balance
equations and presented in terms of Laplace domain model
equation

 The exact solution of the equation is

For a step change of hot fluid
temperature of amplitude, AoC, the
response of cold fluid temperature at
x=L.



RESULTS AND DISCUSSIONS

Hot fluid velocity (0.0132 ±0) m/s and cold fluid velocity (0.009+0.003) m/s

Computed steady state temperature
distribution

Transient response of hot side outlet
temperature of water for step change of
cold side water velocity by +0.003 m/s.

NUMERICAL SIMULATION



Hot fluid velocity (0.0132 ±0) m/s and cold fluid velocity (0.009- 0.003) m/s

Computed steady state temperature
distribution

Transient response of hot side outlet
temperature of water for step change of
cold side water velocity by -0.003 m/s.



COMPARISON OF NUMERICAL AND  ANALYTICAL RESULTS

Transient response of cold side outlet temperature of
water for step change of hot side water temperature
by +5oC



COMPARISON OF EXPERIMENTAL AND NUMERICAL  RESULTS

Comparison of experimental hot water outlet temperature with
numerically simulated hot water outlet temperature at steady state



• Effectiveness relation as a function of number of
transfer unit NTU is incorporated to model heat
exchanger of more than one pass.



Lumped parameter model
• In the lumped parameter model, the spatial variation of a property

is neglected or lumped. Here the independent variable is function
of time only.

• The length of the heat exchanger, reactor, etc., is small enough that
outlet temperature of heat exchanger in the both side is assumed
to be same as the temperature inside those side (shell and tube).

• In other ward, small length gives efficient longitudinal mixing in the
flow that the outlet temperature of any side is same as the
temperature inside that side.



• The energy balance equation are based on the same
assumptions as earlier model, except spatial distribution of
independent variable is not considered here.

Cold fluid 
in shell side

Hot fluid in 
tube side

Wall material



• Steady state solution of the governing equations (energy
equation) is estimated.

SIMULATED TRANSIENT ANALYSIS

Cold fluid 
in shell side

Hot fluid in 
tube side

Wall material

• The matrix solution gives the solution
• Considering the steady state temperatures as initial condition,

perturbations (step change) of inlet temperature and flow
rate is given to obtain transient temperature response of the
other side of the shell and tube heat exchanger using the
Runge-Kutta numerical scheme.

 wscshs TTT



Matlab-Simulink demonstration

• Problem definition: A double pipe heat exchanger has been
utilized to cool benzene flowing in the inner tube by cooling
water flowing in the outer tube. Initial condition are as
follows: Benzene hot side- Wh=0.804 lb/s; Thi = 141 oF;
cph=0.435 BTU/lb-oF; hhAh=0.907845458 BTU/s- oF; rhVhcph=
14.07617 BTU/oF.

• Water cold side- Wc= 2.168 lb/s; Tci = 65 oF; cpc=1 BTU/lb-oF;
hcAc= 2.249877874 BTU/s- oF; rcVccpc= 31.2454 BTU/oF.

• Find steady state temperature of hot side, cold side and wall.
• Show transient analysis for step change of flowrate and

temperature of hot side.



Trial solution
• Modeling of first order differential equation

• ௗ௬
ௗ௧

= ݔ3 − ݕ2 + 1      Eq. (1); 

• ௗ௭
ௗ௧

= ݔ2 − ݕ − ݖ3 Eq. (2); 

Selecting two subsystems

Simulink tutorial given by 
N.L Ricker, Professor 
Emeritus, Chemical 
Engineering
University of Washington



Generation of subsystem-I replicating Eq. 1



Generation of subsystem-II replicating Eq. 2



Overall system and transient analysis



Displayed result in the scope



• Steady sate solution gives

    79.1450572.20369496.3474714wscshs TTT



Subsystem for hot side



Subsystem for cold side



Subsystem for wall material



Results

Cold side temperature change for step change of hot water flowrate (0.805+0.5) lb/s



Cold side wall temperature change for step change of hot water flowrate
(0.805+0.5) lb/s



Cold side temperature change for step change of hot water temperature (141-10) oF



Cold side wall temperature change for step change of hot water temperature (141-
10) oF



Stirred tank heater-A Nonlinear System
• Consider the stirred Tank Heater System (Figure): Total

momentum of the system remains constant and will not be
considered. Write total mass balance: Total mass in the tank
at any time t =rV =rAh where A represents cross sectional
area, h represents height of liquid and r represents density of
the liquid. Assuming that the density is independent of the
temperature and remains constant. Take ܨ  = 0.02236 ℎ .
Write energy balance equation considering no change in
kinetic energy and potential energy. For liquid system assume
change of internal energy same as enthalpy change. Heat
given through steam is Q=5 kW and it is remains unchanged.
Draw Simulink model of the system - total mass balance and
energy balance equations with state variables h (in material
balance) and T (in energy balance). Find the steady state h
and steady state T of the tank. Take inlet temperature of the
tank Ti=30 oC, inlet flow rate of the tank Fi=0.01 m3/min. A=1
m2, r=800 kg/m3, Cp=2000 J/kg-oC. Show the response of h
and T for a step change of Fi (0.01+0.012).



• Mass balance: ௗ(ఘ஺௛)
ௗ௧

= ௜ܨߩ − ܣ;ܨߩ ௗ௛
ௗ௧

= ௜ܨ − 0.02236 ℎ

• Energy balance:
ௗ(ఘ஺௛௖೛்)

ௗ௧
= ௜ܿ௣ܨߩ ௜ܶ − ௣ܶܿܨߩ + ܳ

ܣ
݀(ℎܶ)
ݐ݀

= ௜ܨ ௜ܶ − ܶܨ +
ܳ
௣ܿߩ

ℎܣ
݀ܶ
ݐ݀

= )௜ܨ ௜ܶ−ܶ) +
ܳ
௣ܿߩ



• Steady state solutions
0 = ௜ܨ − 0.02236 ℎ

0 = )௜ܨ ௜ܶ−ܶ) +
ܳ
௣ܿߩ

ℎ௦ ௦ܶ
ᇱ = 0.2 48.75 ᇱ

Response of tank level for the step change of inlet flowrate (0.01+0.002)



Response of tank temperature for the step change of inlet flowrate (0.01+0.002)



Simulink block diagram



Mass balance subsystem



Energy balance subsystem



Exothermic CSTR with cooling system -A Nonlinear 
System with unstable dynamics

  
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dt
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function f=cstr(t,x)
global F Fjf V Vj rowcp rowjcpj U A Ea R k0 
delH Tf Tjf Caf
C=x(1);
T=x(2);
Tj=x(3);
f(1)=(F/V)*(Caf-C)-k0*C*exp(-
Ea/(R*(T+459.6)));
f(2)=(F/V)*(Tf-T)+(delH/(rowcp))*k0*C*exp(-
Ea/(R*(T+459.6)))-(U*A/(V*rowcp))*(T-Tj);
f(3)=(Fjf/Vj)*(Tjf-
Tj)+(U*A/(Vj*rowjcpj))*(T-Tj);
f=f';

Transient using Matlab-function



• Main  program  
clc;
clear all;
global F Fjf V Vj rowcp rowjcpj U A Ea R k0 delH Tf Tjf Caf
F=200+40; %F=(200+40)*0.0283168/3600 m3/s
Fjf=300;   %F=300* 0.0283168/3600 m3/s
V=100; %V=100*0.0283168 m3
Vj=25; % Vj=25*0.0283168 m3;
rowcp=53.25;%rowcp= 20699.53*53.25 J/m3/K
rowjcpj=55.6; ;%rowcp= 20699.53*55.6 J/m3/K
U=75;

%BTU/hr/ft2/oF to W/m2/oK
% U=425.86975;

R=1.987;
k0=16.96*10^(12);

% hr-1 to s-1
%k0=(16.96*10^(12))/3600;
% 1 lb-mol=0.45359237 kg mol
% 1 BTU= 1055.06 J

delH=39000; % delH=39000*2326.021 J/kg mol
Ea=32400;

%1 BTU/lb mol=2326.021 J/kg mol
%Ea=32400*2326.021;

Caf=0.132; % Caf=0.132* 0.45359237/0.0283168 kg mol/m3;
A=88; % A=88*0.092903 m2;
Tjf=0;
Tf=77;
[t,x]=ode45(@cstr,[0 15],[0.08855 75.3563 21.36174]);
plot(t,x(:,1))



Result

Response of CA for step change of feed flow rate (200+40) ft3/hr 



Response of T for step change of feed flow rate (200+40) ft3/hr 



Response of Tj for step change of feed flow rate (200+40) ft3/hr 



Linearization of process
• linearization of a nonlinear function is obtained using a Taylor 

series expansion. Considering first order truncation of the 
series,

  sorder termhigher )()(  s
x

s xx
dx
dfxfxf

s
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Maas balance Equation in non-isothermal CSTR
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Energy balance Equation of CSTR tank in terms of deviation variable 
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Energy balance Equation of cooling jacket in terms of deviation variable 
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• State space model
• The Eqs.(d-f) can be represented to obtain state space model,
•

• Where,

jf

j

A

j

A

F
bT

T
C

aaa
aaa
aaa

T

T

C













































































31333231

232221

131211

0
0

jsjj

s

AsAA

TTT

TTT

CCC



























































dt
Td
dt
Td

dt
Cd

T

T

C

j

A

j

A

and










 


s

a

RT
Ek

V
Fa exp011 

























 
 2021 exp

s

a

s

a
As RT

E
RT

ECka 031 a

 







 


s

a

p RT
Ek

C
Ha exp021 r

  T
CV

UA
RT
E

RT
ECk

C
H

V
Fa

ps

a

s

a
As

p rr


























 
 2022 exp

pCV
UAa
r

23

031 a
pjjj CV

UAa
r

32

pjjjj

jf

CV
UA

V
F

a
r

33



0det

333231

232221

131211












aaa
aaa
aaa


















333231

232221

131211

aaa
aaa
aaa

J s

is Jacobian matrix at 
steady statesJ

0)det(  IJ ss 



Stability of nonlinear system
• Brusselator in terms of non-dimensional variables: It

resembles dynamics of some typical reaction in CSTR.

• Steady state solution is

• Jacobian matrix at steady state is

•
• After estimating derivatives

xyxbxa
dt
dx
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yxbx
dt
dy 2

Two coupled nonlinear ordinary differential 
equations- Brusselator dynamical system by 
Prigogine and Lefever in 1968 and dubbed the 
"Brusselator" by Tyson in 1973.
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• The is an eigenvalue. 
• The stability of the steady state will depend on the sign of the 

eigenvalue or
• When any eigenvalus has positive real part it will be unstable.
• When all eigenvalus has negative real part it will be stable.
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When any eigenvalus has positive real part
with an imaginary part it will be unstable
after attenuating.
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When all eigenvalus has negative negative real 
part with no imaginary part it will be stable.



Bifurcation in CSTR
• Liquid-solid catalytic reaction is carried out in a CSTR.
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Dimensionless mass balance equation
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B.A. Finlayson, Introduction to Chemical Engineering Computing, WILEY



beta=0.15; gamma=30; Le no=0.1; Da number=0.115;

Le=Lewis no=Thermal diffusivity / molecular diffusivity

Da=Damköhler number =Consumption of A by reaction/ 
Consumption of A by convection



beta=0.15; gamma=30; Le no=1080; Da=0.115



Tubular Plug Flow Reactors
Jörg Sauer, Nicolaus Dahmen, Edmund Henrich, 
Ullmann's Encyclopedia of Industrial Chemistry

Large Scale Commercial 
Applications

3.2.1. Olefins by Steam Cracking of Naphtha

3.2.2. Gas Oil Cracking in the FCC Riser Reactor

3.2.3. Vinyl Chloride Production by EDC Dehydrochlorination

3.2.4. High Pressure Ethylene Polymerization for Low Density 
Polyethylene (LDPE) → Polyethylene

3.3. Other Commercial Applications

3.3.1. Gas Phase Halogenation of Methane and Light Alkanes

3.3.2. HCN‐Production in the Degussa BMA Process

3.3.3. Ketene via Acetic Acid or Acetone Cracking

3.3.4. Ethylene Glycol via Ethylene Oxide Hydrolysis

3.3.5. Various Additional Applications

3.4. Research and Development





Mole balance in a tubular reactor 

Mole balance of a reactant species A (rA=-kCAn, n=order of the reaction, k=reaction constant) in 
a tubular reactor with dispersion coefficient D can be written with partial differential equation 
(PDE) as 
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If the order of the reaction n=1 and axial velocity U is constant over the length of the reactor 
the eq. 1 can be written as  
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Finite difference discretization 

This PDE can be discretized with finite difference method with time (Δt) and space (Δx) 
marching as 
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Here i is denoted by elements of space marching or number of nodes. 

Multiplying the eq. by Δt and can be rearranged as 
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Initial condition 

Initial condition is at t=0, and i=1,…, 5,  ܥ௜௧ = 0.8 

Boundary condition 

Now Boundary condition (BC) for face A is CA=0.8;  
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Let divide the whole length of the reactor into 5 nods (distance between two consecutive nodes 
is Δx) between boundary face A and B in the Figure below. Now write equation 5 for five nodes 
(i=1,…, 5). 

 

For i=1 (left boundary node), 
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For i=2,3.., 4 (middle nodes), 
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For example, 2 node equation will be, 
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For i=5 (right boundary node), 
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Putting BC for right face, ܥହାଵ௧ା∆௧ =  ହ௧ା∆௧ܥ
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Now five equations for 5 no. of nodes can be written in the form of 
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Matrix A is called tri-diagonal matrix. 
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Equation 18 in implicit form has been solved using a suitable algorithm of linear algebra like 
Gauss elimination, Gauss-Seidel, or Cholesky decomposition methods.  

 

 

 

 

 

 


